Wilson School
1601 Wilson Boulevard, Arlington, VA

Concept Design Informational Briefing
August 13, 2015
School Board

LEO ADAY | BIG
<table>
<thead>
<tr>
<th>Meetings</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint CB & SB work session</td>
<td>1</td>
</tr>
<tr>
<td>Joint CB & SB/community gallery walk</td>
<td>1</td>
</tr>
<tr>
<td>WRAPS</td>
<td>10+</td>
</tr>
<tr>
<td>PFRC</td>
<td>3</td>
</tr>
<tr>
<td>HALRB Design Review Committee</td>
<td>1</td>
</tr>
<tr>
<td>BLPC</td>
<td>6</td>
</tr>
<tr>
<td>BLPC Parking Subcommittee</td>
<td>1</td>
</tr>
<tr>
<td>H-B Woodlawn Town Meeting</td>
<td>2</td>
</tr>
<tr>
<td>Stratford staff meeting</td>
<td>2</td>
</tr>
<tr>
<td>H-B/Stratford teacher/staff meeting</td>
<td>10+</td>
</tr>
</tbody>
</table>
CIP, BLPC & PFRC PROCESSES

CIP Community Gallery Walk October 2014

BLPC WORKSHOP April 2015

BLPC May 2015

PFRC July 2015

WILSON SCHOOL CONCEPT DESIGN INFORMATIONAL BRIEFING AUGUST 13, 2015
How Design Enhances instruction

Designed for the specific physical and instructional needs of the Stratford students:

• Multi-purpose room with appropriate adaptive equipment
• Adequate number of classrooms which are the required size to meet students’ instructional needs
• Maximizes day lighting which decreases sensory input to heighten instructional output
• Accessible outdoor learning environments
• Covered access to the building

Facilitates sharing space and resources between H-B Woodlawn and Stratford

• Proximity and design will allow students and teachers from both programs to use many of the instructional spaces (Multipurpose room, Black Box, Library, Cafeteria)
• Will allow for more collaboration between staff and students in the programs
How Design Enhances instruction

Design is responsive to instructional and social needs of our student populations

• Creates a variety of small and large; formal and informal learning spaces
• Optimizes hallways and common spaces as learning environments
• The central staircase facilitates a sense of community and assists with supervision
• High quality performance spaces which match the quality of our student productions
• Gym and indoor exercise facilities which meet the needs of the students and the community
• Easy access to a range of outdoor learning environments
BLPC & PFRC APPROVED BUILDING LOCATION

18th Street

Wilson Blvd
CONCEPTS PURSUED BY TEAM

FANNING BARS

TERRACED COURTYARDS

ZIGGURAT

JENGA

SHIFTING ATRIUM
BLPC & PFRC APPROVED CONCEPT DESIGN

FANNING BARS

TERRACED COURTYARDS

ZIGGURAT

JENGA

SHIFITING ATRIUM
August 6, 2015

Dr. Patrick Murphy
Superintendent
Arlington Public Schools
1426 26th Street, North
Arlington, Virginia 22207

Dear Dr. Murphy,

I am pleased to report to you on behalf of the Building Level Planning Committee (BLPC) for the new school building on Wilson Boulevard. The committee selected “Fanning Biers” (concept 3) to be further developed as the schematic design phase. This new facility, which will house 775 students enrolled in the H-B Woodlawn Program and the Stratford Program, as well as other smaller school initiatives currently housed on Vacation Lane, promises to be an important new educational asset for Arlington, as well as a vital community resource for those who live and work in Rosslyn.

As part of its work this spring, the BLPC reviewed a number of concepts for the building, as well as research findings and information provided by consultants and APS staff, related to the geographic characteristics of the site, plus data on transportation and parking options for students, staff and visitors. The architects presented three concept designs for the project and, by strong majority agreement the Committee selected “Fanning Biers” (concept 3) as the best way forward for this project.

The concept design selected by the BLPC seemed the best choice in that it meets the building and site goals set out by APS and presents a creative, yet practical, building that will be an architectural centerpiece for the community.

The concept drawings place the building facing Wilson Boulevard to integrate the building into the existing urban environment, while the design of the building still allows for adequate solar exposure. The current plans call for bus drop-off for both programs on North 18th Street, along the proposed athletic field, with a covered entrance for Stratford students adjacent to the parking structure. Parent drop-off is proposed along North Quinn Street. The building’s position on Wilson Boulevard also allows for the school’s athletic field and nearby park to maximize contiguous open space in the neighborhood.

The design provides both indoor and outdoor educational and recreational spaces for each program, as well as integrated spaces for all students to share. Additional recreational and outdoor amenities will be available on the roof of the building for use by the school, and some of these facilities will likely be available to the community as well.

My fellow BLPC committee members and I look forward to continuing our work during the schematic design phase of this project this fall, as well as continuing our collaboration with others in our community to compare the new school in Rosslyn for a tax vote opening.

Sincerely,

Melissa McCracken
Chief, Building Level Planning Committee
Wilson Project

August 7, 2015

The Honorable Raising Landsman, Chair
The Arlington County School Board
1426 N Quincy St.
Arlington, Virginia 22207

RE: Wilson School - Concept Design

The Public Facilities Review Committee (PFRC) has so far held three (3) meetings during 2015 to consider Arlington Public Schools (“APS”) concept design plan for a new Wilson Secondary School. The main issues discussed at the Wilson School meetings were related to building siting, maximizing the amount of open space on the site, ensuring public access to the recreation space, and parking. Some of the main issues discussed are summarized below.

Building Siting and Design
The PFRC reviewed five concept designs for the building design and massing of the proposed school building, including a consideration of brick street, Wilson Boulevard at 18th Street North. Members of the PFRC felt strongly that the school building should be an integral part of the Wilson neighborhood, and that school design team provided options for placement along both 15th Street and Wilson during the process, later designs put the school facing Wilson Boulevard. The design team also presented several alternatives for the design and massing of the school. The PFRC generally endorsed the concept massing designs, known as the “Fanning Biers” design. At its July 15, 2015, meeting, an informal show of members showed that an overwhelming majority of the PFRC supported both the location of the school building along Wilson Boulevard and the “Fanning Biers” concept.

A design team presentation included a video presentation of site, street, and building perspectives. Members continue to have a desire to see elements, such as trim details, be attractive, open, and accessible by the general public.

Urban Firmer and Elevated Playing Fields
PFRC discussions initially dealt with the use of open space on the site. The PFRC dealt with a desire, expressed by many members of the community currently using the Stratford School site, of locating a regulation size Ultimate Frisbee field on the Wilson site. The APS design team provided a number of drawings showing the configuration of a playing field on the site, with features on the Wilson Boulevard at 18th Street North. After evaluating existing site characteristics and Frisbee field requirements, it was clear that a regulation size Ultimate Frisbee field would not fit wholly within the boundaries of the school owned property. However, a reason for APS members’ preference for location of the school along Wilson Boulevard was to allow for creation of the largest contiguous open space on the 18th Street North side of the site.

The Wilson School project is still in an early stage of the design process and APS has committed to working closely with all residents to continue to address outstanding issues and the PFRC will be working to ensure any new decisions during the schematic design and not permit phase of the project.
DESIGN OVERVIEW
BASIC PROGRAMMING
STRATFORD PROGRAM

INSTRUCTION

FLS

MIP-A

MULTI-PURPOSE ROOM / CYM

CLINIC

CAFETERIA

FRONT OFFICE

LOBBY

STRATFORD ENTRANCE

PARKING/STREET

DESIGN OVERVIEW
BASIC PROGRAMMING
ORGANIZATIONAL CONCEPT
WILSON SCHOOL SITE

The Wilson School site is located in Rosslyn, VA along Wilson Blvd, right at the edge of the Rosslyn Central Business District.
VERTICAL SCHOOL + COMMUNITY

Understanding that the Wilson School will be spread across multiple levels, the main goal was to provide a central space that connects the buildings levels and provide access to outdoor spaces adjacent to all levels.
VERTICAL SCHOOL + COMMUNITY

Understanding that the Wilson School will be spread across multiple levels, the main goal was to provide a central space that connects the buildings levels and provide access to outdoor spaces adjacent to all levels.
VERTICAL SCHOOL + COMMUNITY

Understanding that the Wilson School will be spread across multiple levels, the main goal was to provide a central space that connects the buildings levels and provide access to outdoor spaces adjacent to all levels.
VERTICAL SCHOOL + COMMUNITY

Understanding that the Wilson School will be spread across multiple levels, the main goal was to provide a central space that connects the buildings levels and provide access to outdoor spaces adjacent to all levels.
OPEN SPACES & BUILDING LOCATION

As a starting point, a stacked bar of typical classrooms is located in the middle of the site. This allows for the open space behind the building to be connected to the adjacent park, and protected by the building. Towards Wilson Boulevard a portion of the site is reserved for civic uses.
TERRACES CONNECTING SCHOOL TO FIELD

To create green space adjacent to the instructional spaces the bars are rotated along a single hinge point. This creates sequential terraces leading from the instructional spaces of the school to the field.
LARGE, OPEN & COMMUNITY PROGRAMS ALONG WILSON BLVD

Beneath the rotated classroom bars is a large open ground floor with varying ceiling heights. The large and public functions of the building are placed here. The result is also that all of the spaces shared with the community are located along the site’s public edge at Wilson Blvd.
SITE MANIPULATIONS FOR ENTRIES AND DAYLIGHT
Manipulations to the landscape and ground surface create daylight to the lower level, access under the field to the Stratford Program, and access to 18th St. The remaining wedges facing Wilson Boulevard are programmed as small public parks, one near the entrance to the school and another facing the corner of Wilson & Quinn.
ACTIVATED TERRACES

Each of the terraces have their own themes relating to the use of the floor they are accessed by. These terraces give an opportunity for an urban school to have a 1-story feel, that otherwise would not be possible in a 5-Story school.
DESIGN OVERVIEW
ORGANIZATIONAL CONCEPT

WILSON SCHOOL CONCEPT DESIGN INFORMATIONAL BRIEFING AUGUST 13, 2015
VEHICULAR CIRCULATION
VEHICULAR DROP OFF

There are many drop off zones being considered. Because of the urban site and potential traffic congestion the leading candidate for drop-off organization is where parent drop-off is located along Quinn St, and the Buses drop off along 18th Street.
PARKING GARAGE & BIKE STORAGE
Parking for both bicycles and cars is located underneath the field behind the building.
LOADING AREA

To accommodate loading a service drive is provided behind the 7-Eleven. The kitchen, receiving area, and trash rooms are all located adjacent to this loading area.
SPLIT LEVEL CONCEPT

18TH ST

BUSES

WILSON BLVD

DESIGN OVERVIEW
VEHICULAR CIRCULATION
SPLIT LEVEL CONCEPT

VEHICULAR CIRCULATION

BUSES

18TH ST

PUBLIC

STRATFORD

WILSON BLVD
INTERNAL ORGANIZATION
MAJOR DESIGN ELEMENTS
COMMUNICATING CENTRAL STAIR
To create connections between the levels of the school, a cascading central stair cuts through the building.
CENTRAL STAIR

DESIGN OVERVIEW
MAJOR DESIGN ELEMENTS
COMMUNICATING CENTRAL STAIR
To create connections between the levels of the school, a cascading central stair cuts through the building.
SUNKEN COURTYARDS
To get more daylight in the lower level courtyards are introduced. These courtyards also provide a contained outdoor environment for the Stratford Program.
CONNECTING TERRACE STAIRS
The cascading central stair on the interior is replicated to connect the terraces, allowing students to circulate outside and create a stronger connection between the neighborhood and the school.
VERTICAL CIRCULATION

In addition to the central stair for students, there are 4 simple stairs and a series of elevators. The building core is located at the hinge point containing a bank of elevators and a stair connecting all levels of the building. 3 other stairs are located in strategic locations at the ends of classroom bars. The stratford program would also have a dedicated elevator.
CENTRAL SPACE
DAYLIGHT
In order to create proper learning environments, classrooms are located where there is access to daylight. This was a major design driver for the building.
SUSTAINABLE STRATEGIES

DAYLIGHT
Classrooms have access to sunshine and views outside, improving student comfort and performance, and reducing electrical demand from artificial lights.

RAINFALL COLLECTION
Captured in a cistern and can be used for flushing toilets, mechanical equipment, and irrigation. Also reduces demand on public storm/sewer system.

GEOTHERMAL WATER LOOP
Utilizing naturally stable temperatures underground reduces the energy required to heat and cool the building.

GREYWATER RE-USE
Reclaimed water from hand-washing and uses it to flush toilets and supply water to mechanical equipment.

SOLAR ENERGY
Photovoltaic panels capture energy from the sun and turn it into usable electricity that powers the building.
ENERGY CONSERVATION MEASURES & EUI PERFORMANCE

Wilson School Energy Reduction Strategies

Included in Base Building Cost Estimate

Enhanced Sustainability Measures

ONSITE SOLAR
ONSITE POWER GENERATION

EUI (kBtu/SF)

Kilobtu

-100,000
-50,000
0
50,000
100,000

100% 88% 93% 86% 79% 77% 60% 53% 52% 44%

43 38 40 37 34 33 26 23 20 13

Baseline (Code Compliant Year-round Operation)
API Operating Schedule (Partial Occupancy of the Building During Summer Months)
WWI Increase from 40% to 70%
Enhanced Penetration
High Efficiency Lighting
Daylighting Controls (Added Skylights for Gym and Auditorium)
Air Cooled VRF System
Ground Water Cooled VRF System
LTO Lighting
Solar Hot Water System
PV Panels
MicroTurbine

Total Energy Consumption: 751,9529

Energy Consumption:
- Glazing Type: Double Glazing Low Emissivity Reflective
 - Tinted 6mm/12mm Air
 - Venison VRE 1-36
 - U-value 0.21
 - SHGC 0.23
 - NPD 20% less energy than typical (and its radiation fraction is lower)

- LPD System: 10% less energy than high efficiency lamps

ECM Table Still in progress

WILSON SCHOOL . CONCEPT DESIGN INFORMATIONAL BRIEFING . AUGUST 13, 2015
ARRIVAL & ENTRANCE SEQUENCES
QUESTIONS?
Wilson School
Project Cost Update
Proposed Wilson School Project

- HB Woodlawn Program – 720 students
- Stratford Program – 55 students
- Total 775 students (10% enrollment increase)
- September 2019 completion date
- Funding approved in FY2015-24 CIP: $80,200,000
Agenda

• Project Cost Summary
• Description of Cost Variances
• Detailed Cost Summary
• Possible Project Modifications
• Available/Required Funding
• Next Steps
Total Project Cost Summary

- CIP estimate (Dec 2014): $80,200,000
- Current estimate: $100,153,000
- Difference: $19,953,000
Description of Variances

Floor Area Increase

<table>
<thead>
<tr>
<th>Area</th>
<th>Existing</th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Building</td>
<td>138,000 sf</td>
<td>150,000 sf</td>
<td>170,000 sf</td>
</tr>
<tr>
<td>Stratford</td>
<td>19,300 sf</td>
<td>21,000 sf</td>
<td>30,900 sf</td>
</tr>
<tr>
<td>HB Woodlawn</td>
<td>106,300 sf</td>
<td>115,500 sf</td>
<td>124,600 sf</td>
</tr>
<tr>
<td>Shared Spaces</td>
<td>12,400 sf</td>
<td>13,500 sf</td>
<td>14,600 sf</td>
</tr>
<tr>
<td>**Cost Differences *</td>
<td></td>
<td></td>
<td>$2,650,000</td>
</tr>
</tbody>
</table>

* 20,000 sf @ $344/sf hard cost.
Floor Area Increase

Stratford Program:
• Larger gymnasium to accommodate program and specialized equipment needs
• Larger support spaces to accommodate staff collaboration and storage

H-B Woodlawn Program:
• Larger classrooms to comply with Ed. Specs.
• More classrooms to accommodate expanded enrollment and comply with Ed. Specs.
• Appropriate support space for performing & fine arts program
Description of Variances

Parking

<table>
<thead>
<tr>
<th></th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Structure</td>
<td>81 spaces</td>
<td>92 spaces</td>
</tr>
<tr>
<td>Cost Estimates*</td>
<td>$4,210,000</td>
<td>$5,731,000</td>
</tr>
<tr>
<td>Cost Difference</td>
<td></td>
<td>$1,521,000</td>
</tr>
</tbody>
</table>

* Estimated each underground parking space range of costs per space $50,000 - $60,000, plus additional covered area for Stratford entrance.
Description of Variances

Community Improvements

<table>
<thead>
<tr>
<th>Description of Variances</th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Use of 2nd Level Terrace</td>
<td>0</td>
<td>$1,063,000</td>
</tr>
<tr>
<td>Turf Field with Lights</td>
<td>0</td>
<td>$1,097,000</td>
</tr>
<tr>
<td>Safe Routes to School Improvements</td>
<td>0</td>
<td>$1,022,000</td>
</tr>
<tr>
<td>Enhanced/Raised Height Parking for Community Use/Access</td>
<td>0</td>
<td>$401,000</td>
</tr>
<tr>
<td>Underground Utilities</td>
<td>0</td>
<td>$331,000</td>
</tr>
<tr>
<td>Total Cost Impact</td>
<td></td>
<td>$3,914,000</td>
</tr>
</tbody>
</table>
Description of Variances

Escalation Impact

<table>
<thead>
<tr>
<th></th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escalation Factor</td>
<td>$3,590,000</td>
<td>$6,740,000</td>
</tr>
<tr>
<td></td>
<td>5.8%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Cost Differences</td>
<td>$3,150,000</td>
<td></td>
</tr>
<tr>
<td>Market Factor*</td>
<td>0</td>
<td>$6,081,000</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>9.25%</td>
</tr>
<tr>
<td>Cost Differences</td>
<td>$6,081,000</td>
<td>$6,081,000</td>
</tr>
<tr>
<td>Total Cost Impact</td>
<td></td>
<td>$9,231,000</td>
</tr>
</tbody>
</table>

* Industry construction cost increase factor from Fall 2014 to August 2015
Description of Variances

Soft Cost Increase

<table>
<thead>
<tr>
<th></th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Cost</td>
<td>$14,730,000</td>
<td>$17,677,000</td>
</tr>
<tr>
<td></td>
<td>22.5%</td>
<td>22.5%</td>
</tr>
<tr>
<td>Total Cost Increase</td>
<td></td>
<td>$2,947,000</td>
</tr>
</tbody>
</table>
Detailed Cost Summary

<table>
<thead>
<tr>
<th></th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>$370.00/SF</td>
<td>$55,500,000</td>
<td>$2,650,000</td>
</tr>
<tr>
<td>Site Improvements/demolition</td>
<td>$2,170,000</td>
<td>$1,860,000</td>
<td>$310,000</td>
</tr>
<tr>
<td>Parking</td>
<td>$4,210,000</td>
<td>$5,731,000</td>
<td>$1,521,000</td>
</tr>
<tr>
<td>TOTAL HARD COSTS</td>
<td>$61,880,000</td>
<td>$65,741,000</td>
<td>$3,861,000</td>
</tr>
<tr>
<td>Market factor (9.25%)</td>
<td></td>
<td>$6,081,000</td>
<td>$6,081,000</td>
</tr>
<tr>
<td>Escalation (changes from 5.8% to 9.9%)</td>
<td>$3,590,000</td>
<td>$6,740,000</td>
<td>$3,150,000</td>
</tr>
<tr>
<td>Soft costs (22.5%)</td>
<td>$14,730,000</td>
<td>$17,677,000</td>
<td>$2,947,000</td>
</tr>
<tr>
<td>Consultants, Project Management, etc</td>
<td>$12,130,000</td>
<td>$14,553,293</td>
<td>$2,423,293</td>
</tr>
<tr>
<td>Furniture</td>
<td>$1,500,000</td>
<td>$1,802,138</td>
<td>$302,138</td>
</tr>
<tr>
<td>Technology</td>
<td>$1,100,000</td>
<td>$1,321,568</td>
<td>$221,568</td>
</tr>
<tr>
<td>Community improvements with soft costs</td>
<td></td>
<td>$3,914,000</td>
<td>$3,914,000</td>
</tr>
<tr>
<td>SUBTOTAL PROJECT COST</td>
<td>$80,200,000</td>
<td>$100,153,000</td>
<td>$19,953,000</td>
</tr>
</tbody>
</table>
Possible Cost Modifications

<table>
<thead>
<tr>
<th>Description</th>
<th>CIP Estimate</th>
<th>Current Estimate</th>
<th>Recommendations</th>
<th>Difference Between CIP and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Cost Baseline</td>
<td>$80,200,000</td>
<td>$100,153,000</td>
<td>$100,153,000</td>
<td>$19,953,000</td>
</tr>
<tr>
<td>Reduction in Program of Building 2,000 sf</td>
<td>$0</td>
<td>-$843,000</td>
<td>-$843,000</td>
<td>-$843,000</td>
</tr>
<tr>
<td>Enhanced Sustainability Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensors & Dashboard</td>
<td>$0</td>
<td>$385,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geothermal System</td>
<td>$0</td>
<td>$5,454,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Hot Water & PV Panels</td>
<td>$0</td>
<td>$2,181,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray Water Reclamation</td>
<td>$0</td>
<td>$570,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D&C Staff</td>
<td>$0</td>
<td>$550,000</td>
<td>$550,000</td>
<td>$550,000</td>
</tr>
<tr>
<td>SUBTOTAL OF MODIFICATIONS</td>
<td>$0</td>
<td>$8,297,000</td>
<td>-$293,000</td>
<td></td>
</tr>
<tr>
<td>TOTAL PROJECT COST</td>
<td>$80,200,000</td>
<td>$108,450,000</td>
<td>$99,860,000</td>
<td>$19,660,000</td>
</tr>
</tbody>
</table>

Additional Funding Required
Funding Available/Required

<table>
<thead>
<tr>
<th>Available/Required Funding</th>
<th>CIP Estimate</th>
<th>Current Estimate w/Recommendations</th>
<th>Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond (FY2014-2019)</td>
<td>$ 80,200,000</td>
<td>$ 80,200,000</td>
<td></td>
</tr>
<tr>
<td>Community Improvements (county/APS joint fund)</td>
<td></td>
<td>$ 3,914,000</td>
<td>$3,914,000</td>
</tr>
<tr>
<td>Transfer from annual operation's budget *</td>
<td></td>
<td>$ 1,862,000</td>
<td>$1,862,000</td>
</tr>
<tr>
<td>Additional funding required **</td>
<td></td>
<td>$ 13,884,000</td>
<td>$13,884,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 80,200,000</td>
<td>$ 99,860,000</td>
<td>$19,660,000</td>
</tr>
</tbody>
</table>

* 30% of furniture cost and all technology equipment.

** Potential Sources for additional funding required:
- Funding reserved for additional 300 MS seats in FY2015-24 CIP (16.6M)
- Capital Reserve.
Next Steps

• Continue monitoring escalation factor
• Program area reduction without compromising curriculum
• Area reduction through creative design modifications
• Investigate possible PPA for Solar panels and geothermal system
• Continue to evaluate cost estimate and available funding options